Forecasting Ocean Chlorophyll in the Equatorial Pacific
نویسندگان
چکیده
Using a global ocean biogeochemical model combined with a forecast of physical oceanic and atmospheric variables from the NASA Global Modeling and Assimilation Office, we assess the skill of a chlorophyll concentrations forecast in the Equatorial Pacific for the period 2012-2015 with a focus on the forecast of the onset of the 2015 El Niño event. Using a series of retrospective 9-month hindcasts, we assess the uncertainties of the forecasted chlorophyll by comparing the monthly total chlorophyll concentration from the forecast with the corresponding monthly ocean chlorophyll data from the Suomi-National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (S-NPP VIIRS) satellite. The forecast was able to reproduce the phasing of the variability in chlorophyll concentration in the Equatorial Pacific, including the beginning of the 2015-2016 El Niño. The anomaly correlation coefficient (ACC) was significant (p < 0.05) for forecast at 1-month (R = 0.33), 8-month (R = 0.42) and 9-month (R = 0.41) lead times. The root mean square error (RMSE) increased from 0.0399 μg chl L-1 for the 1-month lead forecast to a maximum of 0.0472 μg chl L-1 for the 9-month lead forecast indicating that the forecast of the amplitude of chlorophyll concentration variability was getting worse. Forecasts with a 3-month lead time were on average the closest to the S-NPP VIIRS data (23% or 0.033 μg chl L-1) while the forecast with a 9-month lead time were the furthest (31% or 0.042 μg chl L-1). These results indicate the potential for forecasting chlorophyll concentration in this region but also highlights various deficiencies and suggestions for improvements to the current biogeochemical forecasting system. This system provides an initial basis for future applications including the effects of El Niño events on fisheries and other ocean resources given improvements identified in the analysis of these results.
منابع مشابه
Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years.
Biological productivity in the equatorial Pacific is relatively high compared with other low-latitude regimes, especially east of the dateline, where divergence driven by the trade winds brings nutrient-rich waters of the Equatorial Undercurrent to the surface. The equatorial Pacific is one of the three principal high-nutrient low-chlorophyll ocean regimes where biological utilization of nitrat...
متن کاملBiogeochemical variability in the central equatorial Indian Ocean during the monsoon transition
In this paper we examine time-series measurements of near-surface chlorophyll concentration from a mooring that was deployed at 80.5E on the equator in the Indian Ocean in 2010. These data reveal at least six striking spikes in chlorophyll from October through December, at approximately 2-week intervals, that coincide with the development of the fall Wyrtki jets during the transition between th...
متن کاملBiophysical Feedbacks in the Tropical Pacific
This study explores the influence of phytoplankton on the tropical Pacific heat budget. A hybrid coupled model for the tropical Pacific that is based on a primitive equation reduced-gravity multilayer ocean model, a dynamic ocean mixed layer, an atmospheric mixed layer, and a statistical atmosphere is used. The statistical atmosphere relates deviations of the sea surface temperature from its me...
متن کاملVariability in the Correlation between Asian Dust Storms and Chlorophyll a Concentration from the North to Equatorial Pacific
A long-term record of Asian dust storms showed seven high-occurrence-frequency centers in China. The intrusion of Asian dust into the downwind seas, including the China seas, the Sea of Japan, the subarctic North Pacific, the North Pacific subtropical gyre, and the western and eastern Equatorial Pacific, has been shown to add nutrients to ocean ecosystems and enhance their biological activities...
متن کاملModelling iron limitation in the North Pacific
The subarctic North Pacific is one of three major high nitrate, low chlorophyll (HNLC) oceanic regions, along with the Southern Ocean and the eastern equatorial Pacific. In these regions, uptake of nitrogen by phytoplankton is widely thought to be regulated by the availability of dissolved iron. The supply of dissolved iron is twofold: via atmospheric deposition of dust and via upward transport...
متن کامل